Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(4): 2281-2297, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543497

RESUMO

The parasitic plant Striga (Striga hermonthica) invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium results from the prehaustorium, which is derived directly from the differentiation of the Striga radicle. The molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental programs that regulate terminal prehaustorium formation in S. hermonthica at cellular resolution. We showed that shortly after germination, cells in the root meristem undergo multiplanar divisions. During growth, the meristematic activity declines and associates with reduced expression of the stem cell regulator PLETHORA1 and the cell cycle genes CYCLINB1 and HISTONE H4. We also observed a basal localization of the PIN-FORMED (PIN) proteins and a decrease in auxin levels in the meristem. Using the structural layout of the root meristem and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots to form the invasive prehaustoria.


Assuntos
Striga , Produtos Agrícolas , Germinação/genética , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Striga/fisiologia
3.
Plant Physiol ; 185(4): 1339-1352, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793943

RESUMO

The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Plantas Daninhas/parasitologia , Striga/fisiologia , Striga/parasitologia , Controle de Plantas Daninhas/métodos
4.
Plant Physiol ; 186(3): 1632-1644, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856485

RESUMO

Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host's absence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to parasitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive, the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS. We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accuracy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the required time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-source software that can be further trained to count different types of seeds for research purposes.


Assuntos
Germinação/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plantas Daninhas/crescimento & desenvolvimento , Software , Sorghum/parasitologia , Striga/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Tomada de Decisões Assistida por Computador , Aprendizado Profundo
5.
Mol Plant ; 13(11): 1654-1661, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835886

RESUMO

Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization. In this study, we developed easy-to-synthesize and highly efficient mimics of zaxinone (MiZax). We performed a structure-activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features. Using the obtained results, we designed several phenyl-based compounds synthesized with a high-yield through a simple method. Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant, promoting growth, and reducing SL content in roots and root exudates of wild-type plants. Moreover, these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions, and did not negatively impact mycorrhization. Taken together, MiZax are a promising tool for elucidating zaxinone biology and investigating rice development, and suitable candidates for combating Striga and increasing crop growth.


Assuntos
Agroquímicos/química , Agroquímicos/farmacologia , Striga/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Mimetismo Molecular , Oryza/crescimento & desenvolvimento , Relação Estrutura-Atividade
6.
Front Plant Sci ; 11: 434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373143

RESUMO

Strigolactones (SLs) are a group of carotenoid derived plant hormones that play a key role in establishing plant architecture and adapting it to environmental changes, and are involved in plants response to biotic and abiotic stress. SLs are also released into the soil to serve as a chemical signal attracting beneficial mycorrhizal fungi. However, this signal also induces seed germination in root parasitic weeds that represent a major global threat for agriculture. This wide spectrum of biological functions has made SL research one of the most important current topics in fundamental and applied plant science. The availability of SLs is crucial for investigating SL biology as well as for agricultural application. However, natural SLs are produced in very low amounts, and their organic synthesis is quite difficult, which creates a need for efficient and easy-to-synthesize analogs and mimics. Recently, we have generated a set of SL analogs, Methyl Phenlactonoates (MPs), which resemble the non-canonical SL carlactonoic acid. In this paper, we describe the development and characterization of a new series of easy-to-synthesize MPs. The new analogs were assessed with respect to regulation of shoot branching, impact on leaf senescence, and induction of seed germination in different root parasitic plants species. Some of the new analogs showed higher efficiency in inhibiting shoot branching as well as in triggering parasitic seed germination, compared to the commonly used GR24. MP16 was the most outstanding analog showing high activity in different SL biological functions. In summary, our new analogs series contains very promising candidates for different applications, which include the usage in studies for understanding different aspects of SL biology as well as large scale field application for combating root parasitic weeds, such as Striga hermonthica that devastates cereal yields in sub-Saharan Africa.

7.
Plant Signal Behav ; 14(11): 1668234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552795

RESUMO

Strigolactones (SLs) are a well-known class of plant hormones, which are involved in a number of developmental and adaptation processes and mediate different interspecific interactions. In spite of the growing knowledge on SL biosynthesis and signal transduction, effects of structural modifications on the activity and efficiency of SLs and their analogs remain largely elusive. SLs are characterized by the presence of a lactone ring (D-ring) that is connected by an enol ether bridge to a second moiety. In this study, we investigated the effect of additional D-ring methylation of SL analogs on their transcription regulating activity. For this purpose, we compared the SL analogs MP13 and AR8, which differ only by the presence of a methyl group at the C-3' atom in the latter. Transcription regulating activity was determined by quantitative real-time PCR measurement of transcript levels of SL-dependent, feed-back regulated genes in treated wild type and ccd7 mutant rice seedlings. Results obtained indicate that C-3' methylation reduces the transcription regulating activity, as shown by the more pronounced suppression of the SL biosynthesis genes DWARF27 (D27) and CAROTENOID CLEAVAGE DIOXYGENASES (CCD7 and CCD8) and higher induction of the SL signaling repressor gene DWARF53 (D53) in MP13 treated seedlings. These results are consistent with a recent study on the biological activities of MP13 and AR8.


Assuntos
Lactonas/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais , Transcrição Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactonas/química , Lactonas/farmacologia , Metilação , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
8.
Front Plant Sci ; 10: 353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001294

RESUMO

Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.

9.
Nat Commun ; 10(1): 810, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778050

RESUMO

Carotenoid cleavage dioxygenases (CCDs) form hormones and signaling molecules. Here we show that a member of an overlooked plant CCD subfamily from rice, that we name Zaxinone Synthase (ZAS), can produce zaxinone, a novel apocarotenoid metabolite in vitro. Loss-of-function mutants (zas) contain less zaxinone, exhibit retarded growth and showed elevated levels of strigolactones (SLs), a hormone that determines plant architecture, mediates mycorrhization and facilitates infestation by root parasitic weeds, such as Striga spp. Application of zaxinone can rescue zas phenotypes, decrease SL content and release and promote root growth in wild-type seedlings. In conclusion, we show that zaxinone is a key regulator of rice development and biotic interactions and has potential for increasing crop growth and combating Striga, a severe threat to global food security.


Assuntos
Carotenoides/metabolismo , Lactonas/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Germinação , Interações Hospedeiro-Parasita/genética , Mutação com Perda de Função , Micorrizas/fisiologia , Oryza/genética , Oryza/parasitologia , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Daninhas , Striga/fisiologia
10.
Heliyon ; 4(11): e00936, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519652

RESUMO

Strigolactones (SLs), a novel class of plant hormones, are key regulator of plant architecture and mediator of biotic interactions in the rhizosphere. Root-released SLs initiate the establishment of arbuscular mycorrhizal (AM) symbiosis by inducing spore germination and hyphal branching in AM fungi (AMF). However, these compounds also trigger the germination of root parasitic weeds, paving the way for deleterious infestation. Availability of SLs is required for investigating of their functions and also for application in agriculture. However, natural SLs are difficult to synthesize due to their complex structure and cannot be isolated at large scale, as they are released at very low concentrations. Therefore, there is a need for synthetic SL analogs. Recently, we reported on the development of simple SL analogs, methyl phenlactonoates (MPs), which show high SL activity in plants. Here, we investigate the effect of MP1, MP3 and the widely used SL-analog GR24 on AMF spore germination and host root colonization. Our results show that MP1 and MP3 inhibit AMF spore germination, but promote the intra-radical root colonization, both more efficiently than GR24. These results indicate that field application of MP1 and MP3 does not have negative impact on mycorrhizal fungi. In conclusion, our data together with the previously reported simple synthesis, high activity in regulating plant architecture and inducing Striga seed germination, demonstrate the utility of MP1 and MP3 as for field application in combating root parasitic weeds by inducing germination in host's absence.

11.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30021834

RESUMO

Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.


Assuntos
Germinação/efeitos dos fármacos , Herbicidas/química , Hidrolases/química , Octoxinol/química , Proteínas de Plantas/química , Plantas Daninhas/química , Striga/enzimologia , Controle de Plantas Daninhas , Cristalografia por Raios X , Herbicidas/farmacologia , Hidrolases/antagonistas & inibidores , Octoxinol/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Striga/efeitos dos fármacos , Striga/fisiologia
13.
J Exp Bot ; 69(9): 2319-2331, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29300919

RESUMO

Strigolactones (SLs) are a new class of phytohormones that also act as germination stimulants for root parasitic plants, such as Striga spp., and as branching factors for symbiotic arbuscular mycorrhizal fungi. Sources for natural SLs are very limited. Hence, efficient and simple SL analogs are needed for elucidating SL-related biological processes as well as for agricultural applications. Based on the structure of the non-canonical SL methyl carlactonoate, we developed a new, easy to synthesize series of analogs, termed methyl phenlactonoates (MPs), evaluated their efficacy in exerting different SL functions, and determined their affinity for SL receptors from rice and Striga hermonthica. Most of the MPs showed considerable activity in regulating plant architecture, triggering leaf senescence, and inducing parasitic seed germination. Moreover, some MPs outperformed GR24, a widely used SL analog with a complex structure, in exerting particular SL functions, such as modulating Arabidopsis roots architecture and inhibiting rice tillering. Thus, MPs will help in elucidating the functions of SLs and are promising candidates for agricultural applications. Moreover, MPs demonstrate that slight structural modifications clearly impact the efficiency in exerting particular SL functions, indicating that structural diversity of natural SLs may mirror a functional specificity.


Assuntos
Germinação/efeitos dos fármacos , Lactonas/metabolismo , Orobanche/efeitos dos fármacos , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Striga/efeitos dos fármacos , Lactonas/química , Reguladores de Crescimento de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...